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ABSTRACT 

We classify all finite groups G such that the product of any two non- 
inverse conjugacy classes of G is always a conjugacy class of G. We also 
classify all finite groups G for which the product of any two G-conjugacy 
classes which are not inverse modulo the center of G is again a conjugacy 
class of G. 

1. I n t r o d u c t i o n  

We're going to consider finite groups G in which the  product  of two conjugacy 

classes is itself a conjugacy class, except in a few cases where tha t  product  

obviously can ' t  be a single conjugacy class. If we denote  by x c the G-conjugacy 

class of an element x E G, then  the product  x a y  c of two conjugacy classes x a 

and ya  in G is itself a conjugacy class if and  only if it satisfies 

(1.1) xCy  c = (xy) c .  

This equat ion holds t r ivial ly if ei ther x or y belongs to the center Z(G) of G. 

So we may assume tha t  bo th  x and y lie in the complementary  subset  G - Z(G) 
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to Z(G) in G. Then (1.1) certainly fails when x a is the inverse class (y-1)G to 

ya, since x a y  G then contains the trivial conjugacy class I a = {1}, but has size 

Ixaya I >_ Ixa[ > 1, and thus must contain at least one other conjugacy class. 

Our first assumption is that this is the only situation in which (1.1) fails. So we 

are going to consider finite groups G satisfying 

HYPOTHESIS A: Equation (1.1) holds for alI x , y  E G such that x a ~ (y -1 )c .  

Of course, this hypothesis holds for every abelian finite group G. Another 

large class of groups satisfying it consists of the Camina p-groups. These are 

the finite p-groups G such that  each non-trivial coset x[G, G] of the derived 

group [G, G] is a single conjugacy class x a in G. Of the many papers about 

such groups we only mention [2], [5] and [6]. Using some of the deepest results 

in those papers, we can show that  all Camina p-groups satisfy Hypothesis A. 

Hypothesis A also holds for a few other groups G. One such group is the 

semi-direct product F + )~ F • of the additive group F + of any finite field F 

with the multiplicative group F • of F.  This semi-direct product is just cyclic 

of order 2 when IF[ = 2. But it is a Frobenius group for all other IF]. Another 

Frobenius group G satisfying Hypothesis A is the semi-direct product E9 )4 Qs of 

an elementary abelian group E9 of order 9 with the unique quaternion subgroup 

Qs of order 8 in the automorphism group of Eg. The interest of E9 )~ Q8 as an 

example was pointed out by Camina in his original paper [1]. 

Our first main result is that  the above groups are the only ones. 

THEOREM A: A finite group G satisfies Hypothesis A if  and only i f  it is 

isomorphic to exactly one of the groups in the following list: 

(1.2a) Any  finite abelian group. 

(1.2b) A non-abelian Camina p-group, for some prime p. 

(1.2c) The group F + >~ F x , for some finite field F with IF] > 2. 

(1.2d) The group E9 >4 Qs. 

Another situation where (1.1) clearly fails is when the classes x v and (y-X)G 

have the same non-trivial image xGZ(G)/Z(G) = (y-1)GZ(G)/Z(G) ~ 1G/Z(G) 

in the factor group G/Z(G).  In this case xay  G contains some element z �9 Z(G), 

yet has size [xVya[ >_ [xG[ > 1. So it contains both z a = {z} and at least one 

other conjugacy class of G. Weakening Hypothesis A to avoid this situation, we 

obtain 

HYPOTHESIS B: I f  x, y �9 G and xGZ(G) ~ (y-X)GZ(G), then (1.1) holds. 

When a finite group G satisfies this weaker hypothesis, so does any finite 
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group H isoclinic to G, in the sense of Philip Hall [3] (see Proposition 4.12 

below). Our other main result is that  this is the only freedom we have. 

THEOREM B: A finite group G satisfies Hypothesis B i f  and only i f  it is isoclinic 

to a group satisfying Hypothesis A, and thus to one of the groups on the list 

(1.2). 

Since all abelian groups satisfy both our hypotheses, Theorem A follows from 

Theorems 4.3 and 5.8 below, while Theorem B follows from Theorems 4.13 and 

5.11. Another consequence of Theorems 4.3 and 5.8 is 

THEOREM C: A non-abelian finite group G satisfying Hypothesis B satisfies 

the stronger Hypothesis A i f  and only i f  Z(G) <_ [G, G]. 

2. N o t a t i o n  

Our notation for objects associated with a finite multiplicative group G is mostly 

standard. We use 1 or l a  to denote both the identity element of G and the 

trivial subgroup {1} of G. We write (x) for the cyclic subgroup of G generated 

by a given element x E G. We denote by G # the set G - 1 = G - {1} of all non- 

identity elements of G. To say that  some H is a subset, a subgroup or a normal 

subgroup of G we write H C G, H <_ G or H ~ G, respectively. To indicate, in 

addition, that  H is properly contained in G, we write H C G, H < G or H <~ G, 

respectively. If x, y C G, then x y denotes the conjugate element y - l x y  E G and 

[x,y] = [x,y]a denotes the commutator  x - l y - l x y  = x - i x  y E G. If x E G and 

H < G, then x H denotes the H-conjugacy class of all x w, for w E H,  and Ix, HI 

denotes the set of all Ix, w], for w c H.  Since x w = x[x,w] for all w E H,  we 

have x H = x[x,H]. It  follows that  xHy g = x[x,g]y[y,  H] = xy[x, g]Y[y, HI, 

and (xy)  H : xy[xy, H], for any x, y C G. Hence 

(2.1) xHy H = (xy) H if and only if [x, g]Y[y, H] = [xy, HI 

for any x, y C G and H _< G. 

By long-standing convention the expression [K, HI,  for subgroups K, H _< G, 

denotes, not the set of all commutators  [x, y], for x E K and y E H,  but rather  

the subgroup ([x, y] I x �9 K, y �9 H)  of G generated by those commutators.  This 

does not conflict with the previous notation when K is tim element or subgroup 

1 of G, since both the subset [1, H] and the subgroup [1, H] are equal to {1}. 

However, there could be a conflict when K = H = N,  for some N _ G. In this 

case N is both a subgroup of G and the identity element 1G/N of the factor group 
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GIN. So the expression IN, N], when defined using commutation in G, denotes 
the commutator subgroup of N, while that same expression, when defined using 

commutation in G/N, denotes the identity element N = lC/N = [1G/N, 1G/N] 
of GIN. To avoid this ambiguity, we always write any commutator expression 

in the form [X, Y]O/N when it is to be computed using commutators in G/N, 
reserving the notation IX, Y] for expressions to be computed in G. 

We write the subgroups in the lower central series of G as 7n(G), where n 

runs over all strictly positive integers. They are defined inductively by 

(2.2a) 71 (G) = G 

and 

(2.2b) 7 n + l ( a )  = [Tn(a) ,  GI 

for any integer n > 1. Note that 72(G) is the derived group [G, G] of G. Because 

G is finite, there is a unique integer c > 0 such that 71(G) > 72(G) > ' . .  > 

7c+1(G) = 7c+2(G) . . . .  . We define 7oo(G) to be the "limit group" 7c+l(G). 

So the full lower central series for G is 

(2.3) G ~-~ 71(G) > 72(G) > " "  > 7c+ l (G)  = 7c+2(G) . . . . .  7oo(G). 

It follows from this and (2.2b) that 

(2.4) a]  = 7o (a). 

Furthermore, the factor group G/7o~ (G) is nilpotent with class c. Indeed, %~ (G) 

is the smallest normal subgroup N of G such that the factor group G/N is 

nilpotent. 

If H _< G, and X is either a subset or an element of G, then NH(X) and 

CH(X) denote the normalizer and centralizer, respectively, of X in H. We 

write Z(G) for the center Co(G) of G. 

Our one non-standard notation concerns what we shall call the right 

mult ipl ier  

(2.5) MH(S) = (y �9 H ISy = S} 

of any subset S C G in any subgroup H < G. Clearly MH(S) is a subgroup 

of H, and S is a union of cosets XMH(S) of this subgroup. Hence IMH(S)I 

divides ISI. Because our group G is finite, so is its subset S. Since ISyl = ISI, 
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for any y �9 H, we conclude that Sy = S if and only if Sy C S. So we have the 

alternative definition 

(2.6) MH(S) = {y �9 H [ Sy C S} 

for right multipliers in finite groups. Finally, we remark that  the subgroup 

MH(S) is normal in H wtmnever the subset S is H-invariant, in the usual sense 

that S x = S for all x �9 H. In particular, MG(x G) is a normal subgroup of G, 

for any conjugacy class x a in G. 

3. C o n j u g a c y  classes 

Our hypotheses pass immediately to factor groups. 

PROPOSITION 3.1: If  a finite group G satisfies Hypothesis B, then so does the 

factor group G / N  of G by any N <3 G. If, in addition, N contains Z(G), then 

GIN  satisfies the stronger Hypothesis A. On the other hand, G I N  also satisfies 

Hypothesis A whenever G does. 

Proof: Let G be the factor group GIN.  The natural epimorphism e: x ~-* x N  

of G onto G sends Z(G) into Z(G). It also sends the G-conjugacy class x a of 

any x 6 G onto the G-conjugacy class e(x) ~ of e(x). Hence it sends xaZ(G) 
into e(x)GZ(G). 

Suppose that ~,~ C 0 satisfy ~Gz(G) r (~-I)GZ(Q). Then there are some 

elements x , y  �9 G such that  ~ = e(x) and ~ = e(y). If xGZ(G) = (y-1)GZ(G), 

then 

;~eZ(~) _- e(xGZ(G))Z(G) ~- c((y-1)Gz(G))Z(G) -~ (~-I)Gz(r  

which is false. So xGZ(G) r (y-1)GZ(G). Hence xGy e = (xy) c by Hypothesis 

B for G. Applying the epimorphism e to this last equation, we obtain ~G~O = 

(~9)G. Therefore Hypothesis B holds for G = G / N  whenever it holds for G. 
Suppose that  the above x, y �9 G only satisfy ~G r (~-1)~, but that  Z(G) _< 

N. Then e(Z(G)) = l c ,  so that the equation xGZ(G) = (y-X)CZ(G) still 
implies a contradiction 5: ~ = e(xCZ(G)) = e((y-i)GZ(G)) = (~-1)~. With this 

modification, the above argument shows that  G = G I N  satisfies Hypothesis A 

when Z(G) <_ N and G satisfies Hypothesis B. 

Finally, if G satisfies Hypothesis A, then ~G r (~-I)G implies x a r (y-1)a,  

and thus implies both xGy C = (xy) G and ~c~G = (~ )G.  So G satisfies 

Hypothesis A, and the proposition is proved. | 

A simple, but useful, consequence of Hypothesis A is 
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PROPOSITION 3.2: I ra  finite group G satisfies Hypothes is  A,  then xaZ(G)  = x G 

for every  e lement  x �9 G - Z(G). Hence Z(G) _< [K, G] whenever  K is a non- 

central subgroup o[ G. 

Proof." The product x a z  is equal to the class (xz) c = ( (x - - l z -1) - - I )  G, for 

any x E G - Z ( G )  and any z E Z(G). I f x  a ~ x a z ,  then Hypothesis A for 
y = x - l z  -1 tells us that  x a ( x - l z - 1 )  a = ( x ( x - l z - 1 ) )  a = ( z - l )  a = {z- l} .  

This is impossible because Ixal > 1. Therefore x a z  = x a for all z E Z(G), i.e., 

xaZ(a)  = xa. 

If K is a non-central subgroup of G, then there is some element x C K -  Z(G). 

By the above arguments we have xGZ(G)  = x a.  Hence 

z ( a )  = Ix, 1]Z(G) c Ix, G]Z(G) = z - l x a Z ( O )  = x - i x  G - ~  [X, a]  C [K, G]. 

So the proposition holds. | 

For the rest of this section G will be an arbitrary finite group satisfying 

Hypothesis B. We want a clearer description of the possible conjugacy classes 

x c = x[x,  G], for x C G. Suppose that  x lies in some normal subgroup N of G 

containing Z(G). Then [N, G] is a normal subgroup of G contained in N. So 

is the product [N,G]Z(G).  When x does not lie in [N,G]Z(G) ,  the conjugacy 

class x G has a very simple description. 

PROPOSITION 3.3: I f  Z(G) < N <3 G, for some f inite group G satisfying Hy- 

pothesis  B, then [x, G] = IN, G] for all x �9 N - [ N ,  G]Z(G). Hence the conjugacy 

class x a = x[x,  G] is the coset x[N,  G], for a11 such x.  

Proof: Let M be the normal subgroup [N, G]Z(G) of G contained in N. We 

prove the proposition in a series of steps. 

STEP 1: For any x E N - M the subset Ix, G] is a normal  subgroup o f  G. 

Proof." We first show that  [x, G]y C [x, G], for any y e [x, G]. Since x does not 

lie in the normal subgroup M of G, while y does, the conjugacy classes x G and 

(y -1)a  are subsets of the disjoint sets N - M and M, respectively. Because 

M contains Z(G), it follows that  xcZ(G)  ~ (y-1)GZ(G). Thus x a y  a = (zy)  c 

by Hypothesis B. But y -- Ix, z] = x - i x  z, for some z E G. Hence x y  --- x z is 

conjugate to x, and (xy)  C = x ~  Therefore 

x[x, G]y = xGy c f i y c  = (xy)a = f i  = ~[~, hi.  

So Ix, G]y c_ Ix, G], for all y e Ix, G]. 
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We have seen that the subset Ix, G] of the finite group G is closed under 

multiplication in G. Since [x, G] contains 1 = [x, 1], it must be a subgroup of 

G. The commutator identity [x, zw] = [x, w] [x, z] w, for w, z �9 G, implies that  

Ix, G] w = [x, w]-l[x, C] = [x,G], for any w �9 G. So the subgroup [x,G] is 

normal in G, and this step is proved. | 

The relations between the various subgroups Ix, G] are based on 

STEP 2: Zf x �9 N - M and y �9 N satisfy x M  ~ y - i M ,  then [x,G][y,G] = 

[xy, a]. 

Proof: The conjugacy class x a is x[x, G] C_ x[N, G]. Hence the product xGZ(G) 
is contained in x[N, G]Z(G) -- xM.  Similarly, (y-1)G is contained in y-~M.  

Since the cosets x M  and y - l M  of M are different, they are disjoint. Therefore 
xGZ(G) r (y-1)GZ(G). So xay  a = (xy) a by Hypothesis B. In view of (2.1) 

this last equation is equivalent to [x, G]Y[y, G] = [zy, G]. But [x, G] y = Ix, G], 
since [x, G] ~ G by Step 1. Thus the present step holds. | 

One consequence of the preceding step is 

STEP 3: For any x �9 N - M, the normal subgroup [x, G] contains [M, G]. So 
the subgroup [x, G] depends only on the coset xM.  

Proof." I f y  E M, then x M  r M = y - l M .  Hence [x,G][y,G] = [xy, G] by Step 

2. It follows that  I Ix, G]I _< I[xy, G]I. A similar argument, using xy �9 N -  M and 
y-1 �9 M in place of x and y, respectively, shows that  I[xy, G]] < I[(xy)y -1, G]I = 
I[x, G]I. Therefore I[xy, G]I = I Ix, G]I. 

For any z �9 [y, G], the product Ix, G]z is a subset of size I[x, G]lin the finite set 
[x, G] [y, G] -= [xy, G] with the same size. So it must equal the latter set. Since 
1 = [xy, 1] lies in [xy, G], we conclude that z -~ belongs to the finite group [x, G]. 
It follows that z �9 [x, G] for all z �9 [y, G] and all y �9 M. Thus [M, G] < [x, G]. 

This implies that [xy, G] = Ix, G][y, G] = Ix, G], for all y C M. Hence the 

subgroup [x, G] depends only on the coset xM,  and the step is proved. | 

Now we can finish the proof of Proposition 3.3. Suppose that  x, y �9 N - M 

satisfy x M  ~ yM. Then xy -1 �9 N - M,  so that [x, G], [y, G] and [xy -1, G] 

are normal subgroups of G by Step 1. Furthermore, x y - l M  = x M y - l M  is 

different from y - I M ,  since x M  ~ M. So Step 2, with xy -1 in place of x, tells 

us that  [xy-l,G][y,G] = [(zy-1)y,G] = [x,G]. Hence the subgroup [y,G] is 
contained in [x, G]. By symmetry [x, G] is contained in [y, G]. Thus [x, G] = 

[y, G] whenever x, y �9 N - M lie in different cosets xM,  y M  of M. On the 
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other hand, Ix, G] = [y, G] by Step 3 whenever x, y 6 N - M lie in the same 

coset x M  = y M  of M. So the subgroup [x, G] is independent of the choice of 

x 6 N - M. Since this subgroup contains [M, G] by Step 3, we conclude that  

it equals the subgroup [N, G] generated by the subsets [z, G] for z 6 N. Thus 

Proposition 3.3 is proved. | 

The other situation we must handle is that  in which x belongs to some normal 

subgroup N <~ G such that  IN, G] = N. For the moment we only treat the case 

where N is a minimal normal subgroup of G, i.e., is minimal among the non- 

trivial normal subgroups of G. 

PROPOSITION 3.4: Let N be a minimal normal subgroup of  some finite group 

G satisfying Hypothesis B. Suppose that [N, G] = N .  Then N # = N - 1 is a 

single G-conjugacy dass with size IN#[ > 1. Hence N is an elementary abelian 

p-group, for some prime p. 

Proof: The intersection N N Z(G) is a normal subgroup of G contained in 

N. It cannot equal N,  since [N,G] = N > 1 -- [N N Z(G ) ,G ] .  So it must 

be 1 by the minimality of N. It follows that two elements x, y E N satisfy 

xGZ(G) # (y-1)GZ(G) if and only if x a # (y-1)a .  Thus Hypothesis B implies 

that  

(3.5) x a y  a = (xy) G whenever x , y  6 N and x a ~ (y-1)G. 

Our minimal normal subgroup N is non-trivial by definition. So there is some 

element x 6 N #. Since N < G, it follows that  x a G N #. 

Suppose that  x a C N #. Then some element y 6 N # satisfies x a ~ (y-1)a .  

By (3.5) this implies that  x a y  a = (xy) a. 

If (xy) a ~ ya,  then we can apply (3.5) with xy  and y-1 in place of x and y, 

respectively. It tells us that  ( xy )a (y -1 )  G = x G. So xGya(y -1 )  a = x a. Thus 

yC(y -1 )a  is a subset of the group MG(X a) in (2.6). The multiplier M v ( x  a) 

is a normal subgroup of G. It is properly contained in N, since x a G N is a 

non-empty union of cosets of MG(xG). So it must be 1 by the minimality of N. 

Thus y a ( y - 1 ) a  = 1, which forces ya  to consist of a single element y 6 Z(G). 

This is impossible, since y 6 N # and N A Z(G) = 1. Therefore we must have 
(xy)G = ya. 

Now yGxa = x a y  c = (xy) e = yG. So x a is a subset of MG(yG). But 

M a(ya ) ,  like M e ( x a ) ,  must be 1. Therefore x c = 1, which is impossible since 

x 6 N #. Because the assumption x G C N # always leads to a contradiction, 
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we conclude that N # = x C is a single G-conjugacy class. Of course, IN#1 > 1, 

since otherwise N would be central in G, contrary to our assumptions. 

If the minimal normal subgroup N is not abelian, then it is a direct product 

of non-abelian simple groups. So its order must be divisible by at least two 

distinct primes p and q. Then N # contains at least two distinct G-conjugacy 

classes - -  one consisting of elements with order p, and one consisting of elements 

with order q. This is false because N # is a single conjugacy class. Thus N is 

abelian. The minimality of N now forces it to be an elementary abelian p-group, 

for some prime p. So the proposition holds. | 

We use Proposition 3.1 to extend the above result to 

PROPOSITION 3.6: Suppose that 1 < N = IN, G] <~ G and Z(G) A N = 1, for 

some finite group G satisfying Hypothesis B. I f  N / M  is a chief factor of G, for 

some M <~ G with M < N, then N - M is a single conjugacy class in G. 

Proof: Fix a normal subgroup M of G contained in N such that N / M  is a 

chief factor of G, i.e., such that N / M  is a minimal normal subgroup of G/M. 

Since [N, G] is N, its image [N/M, G/M]G/M under the natural epimorphism 

e: G --~ G /M is N/M.  Propositions 3.1 and 3.4 now tell us that (N /M)  # = 

(N/M)  - IG/M is a single G/M-conjugacy class with size [(N/M)#[ > 2. Hence 

any G-conjugacy class x a C_ N - M has image e(x a) = (N/M)  # in G/M. 

Suppose that N - M  is not a single G-conjugacy class. Then there are elements 

x E N - M and y E M such that (yx) a and x G are two distinct G-conjugacy 

classes contained in N - M. Since Z(G) A N = 1, it follows that (yx)GZ(G) 
xaZ(G) = ((x-1)-I)GZ(G).  Hypothesis B now tells us that (yx)a(x-1)  a = 
((yx)x-1)a = yR. But e sends both conjugacy classes (yx) G, (x - l )  a c N - M 

onto (N/M)  #, and sends ya C M to 1G/M. So ( N / M ) # ( N / M )  # = 1G/M. This 

is false because [(N/M)#[ _> 2. Thus N - M is a single G-conjugacy class, and 

the proposition holds. | 

Finally, we note the following easy consequence of Propositions 3.1 and 3.4. 

PROPOSITION 3.7: Any finite group G satisfying Hypothesis B is solvable. 

Proo~ If G is not solvable, then it has two normal subgroups M and N such 

that M <~ N ~ G and N / M  is a non-abelian minimal normal subgroup of G/M. 

This is impossible by Proposition 3.4, because [N/M, G/M]G/M must be N / M ,  

and G/M satisfies Hypothesis B by Proposition 3.1. So this proposition holds. 
| 
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4. N i l p o t e n t  g roups  

All finite abelian groups G satisfy both Hypothesis A and Hypothesis B. In this 

section we're going to study non-abelian nilpotent groups G satisfying one of 

these hypotheses. Such G are closely related to Camina p-groups. 

We follow [2] by saying that a finite group G is a C a m i n a  g roup  if each non- 

trivial coset x[G, G] �9 (G/[G, G]) # is a single G-conjugacy class x G = x[x, G]. 

This is obviously equivalent to 

(4.1) Ix, G] = [G, G], for all x �9 G - [G, G]. 

Every abelian group is a Camina group. The other nilpotent Camina groups 

satisfy 

PROPOSITION 4.2: Any non-abelian nilpotent Camina group G is a p-group, 

for some prime p. 

Proof: Because G is nilpotent and non-abelian, it has a non-abelian Sylow 19- 

subgroup Gp, for some prime p. Furthermore, G is the direct product Gp x Gp, 

of Gp with the unique Hall if-subgroup Gp, of G. So [G, G] is the direct product 

of [Gp, Gp] < Gp with [Gr < Gr 

There is some element x �9 Gp - [Gp,Gp] = Gp - [G,G]. By (4.1) we have 

Ix, G] = [G,G] = [Gp,Gp] x [Gp,,Gp,]. But Ix, G] C_ Gp, since x �9 Gp <3 G. It 

follows that  [Gr Gr = 1. 

The abelian direct factor Gp, is now central in G. Hence [y, G] = 1 < [G, G], 
for any y �9 Gp #, = Gp, - [G,  G]. But [y, G] = [G, G] by (4.1). This contradiction 

shows that  Gp, = 1. Therefore G = G o is a p-group. II 

Camina p-groups have been studied extensively, notably in [2], [5] and [6]. As 

a result of those studies we have 

THEOREM 4.3: The following properties are equivalent, for any non-abelian 

nilpotent finite group G: 

(4.4a) G satisfies Hypothesis A. 

(4.4b) G satisfies Hypothesis B, and Z(G) _< [G, G]. 

(4.4c) G is a Camina p-group, for some prime p. 

Proof: Suppose that G satisfies Hypothesis A. Then it satisfies the weaker 

Hypothesis B. Since G is not abelian, we may apply Proposition 3.2 with K = G 

to conclude that Z(G) _< [G, G]. Therefore (4.4b) holds when (4.4a) does. 
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If G satisfies (4.4b), then Proposition 3.3 for N = G tells us that  (4.1) holds. 

So G is a Camina group. Now Proposition 4.2 completes the proof that  (4.4c) 

holds when (4.4b) does. 

Finally, suppose that  G is a Camina p-group, for some prime p. The class of 

the p-group G is either 2 or 3 by the Main Theorem of [2]. In either case, [5, 

Theorem 5.2(i)] and the definition of Camina groups imply that  the conjugacy 

classes of G are given by 

x a = x 7 2 ( a )  

---- x73(G ) 

_ -  

if x �9 G - "y2(G), 

if x �9 ~2(G) - "~3(G), 

if x �9 73(G). 

With this information it is straightforward to verify that G satisfies Hypothesis 

A. So (4.4a) holds when (4.4c) does, and the theorem is proved. | 

To state an equivalent of the above theorem for Hypothesis B we shall use 

Philip Hall's concept of isoclinism in [3]. Let G be the factor group G/Z(G)  

of an arbitrary finite group G. For the rest of this section 2 and 9 will denote 

arbitrary elements of G, while x and y denote arbitrary elements of G having 

images ~ -- xZ(G) and 9 = yZ(G) in G. Comnmtation in G induces a well 

defined function c = ca: 0 x G --~ [G,G], sending 2 and 9 to 

(4.5) c(2, 9) = [z, y] �9 [a,  a] .  

This function determines many things. For example, the natural homomor- 

phism h = ha: z ~ xZ(G) of [G,G] into 0 = G/Z(G)  sends c(2,~) �9 [G,G] 
to 

(4.6) t,(c(2, 9)) = [2, 9]4 �9 G. 

Since the group [G, G] is generated by all possible commutators c(2, Y) = [x, y], 

this implies that the function c determines the homomorphism h. 

The map x, ~ ~-* x # = x y is a well defined conjugation action of G on G, 

leaving [G, G] invariant. Since x y is x[x, y], we have 

(4.7) x ~ = xc(h(x),  9) �9 [G, G] 

whenever x �9 [G, G]. Thus the conjugation action of G on [G, G] is determined 

by c and h, and hence by c alone, as Philip Hall remarked in [3]. 

He also remarked that  the subgroups ~n(G), for n > 2, are determined by c. 

Indeed, "/2(G) is 

(4.sa) = [c ,  G], 
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while Vn+I(G) = [7n(G),G], for any n > 2, is the subgroup 

(4.8b) ' ~nTl (G)  = c(h(~n(G)) , G)~_ [G,G] 

generated by the elements c(h(x), ~1), for x e %~(G) and 9 E G. 

Our Hypothesis B also depends only on c. 

PROPOSITION 4.9: Hypothesis B for a finite group G is equivalent to 

HYPOTHESIS 4.10: If  2,9 6 G and 2c # (~1-1) ~, then c(2, G)Yc(~,G) = 

c(~,~). 

for the factor group G = G/Z(G) and the function c: G x G --* [G, G]. 

Proof'. If 2 E G is the image xZ(G) of x C G, then the subset xaZ(G) C_ G is 

the inverse image of the conjugacy class 2 ~ C G under the natural epimorphism 

of G onto G = G/Z(G). Similarly, (y-1)aZ(G) is the inverse image of (~-1)r 

whenever y C G has image ~ = yZ(G) in G. We conclude that  the assumption 

xaZ(G) ~ (y-1)cZ(G) in Hypothesis B is equivalent to the assumption 2V r 

(~-1)~ in Hypothesis 4.10. 

We know from (2.1) that  the conclusion xCy a = (xy) a in Hypothesis B 

is equivalent to [x, G]Y[y, G] -~ [xy, G]. In view of (4.5), this last equation 

is equivalent to the conclusion c(2, G)gc(~, G) = c(2~, r  in Hypothesis 4.10. 

Thus the proposition holds. | 

Two finite groups G and H are called isoclinic if there exist an isomorphism i 

of the factor group G -- G/Z(G) onto/~ = H/Z(G), and an isomorphism j of the 

subgroup [G, G] onto [H, H], such that  i and j carry the map cG: G x G --~ [G, G] 

to the map CH: fI  x [-I ---* [H,H], in the sense that  

(4.11a) CH(i(Yc), i(~)) = j(Cc(2, 9)) e [H, H] 

for all 2 ,9  E G. The resulting pair ( i , j )  is called an isocl inism of G onto H. 

It follows from (4.6) that  the isomorphisms i and j must carry hG to hH, in the 

sense that  

(4.11b) hH(j(x)) = i(hG(x)) e [-I 

for all x C [G, G]. In view of (4.7) they also carry the conjugation action of 0 

on [G, G] to that  o f /~  on [H, H], in the sense that  

(4.11c) j(x) i(~) = j (x  ~) e [H,H] 
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for all x E [G, G] and ~ c G. Finally, it follows from (4.7) that  

41 

(4.11d) j ( % ( G )  ) = "/n(H) 

for all n > 2. 

The word "isoclinism" also denotes the relation "G is isoclinic to H."  This 

is obviously an equivalence relation among finite groups. Because isoclinism 

preserves everything appearing in Hypothesis 4.10, it is clear that  a finite group 

G satisfies that hypothesis if and only if every finite group H isoclinic to G 

satisfies the santo hypothesis. This and Proposition 4.9 imply 

PROPOSITION 4.12: I ra  finite group G satisfies Hypothesis B, then so does any 

finite group H isoclinic to G. 

Using one of Philip Hall's important results in [3], we can prove 

THEOREM 4.13: A finite group G is non-abelian, nilpotent, and satisfies 

Hypothesis B i f  and only i f  it is isoclinie to a non-abelian Camina p-group, 

for some prime p. 

Proo[: Suppose that G is non-abelian, nilpotent, and satisfies Hypothesis B. 

The argument on page 135 of [3] gives us some finite group H isoclinic to G 

such that Z(H) <: [H, H]. Since G is nilpotent with some class c _> 2, we have 

1 = %+1(G) < %(G) < 72(G) = [G,G]. In view of (4.11d) this implies that  

1 = %+1(H) < % ( H )  <_ 72(H) = [H,H]. So H is non-abelian and nilpotent, 

with the same class c as G. Because G satisfies Hypothesis B, so does H by 

Proposition 4.12. Therefore H is a non-abelian, nilpotent, finite group satisfying 

Hypothesis B with Z(H) < [H, H]. By Theorem 4.3 this implies that  H is a 

non-abelian Camina p-group, for some prinm p. 

On the other hand, any non-abelian Camina p-group H satisfies Hypothesis 

B by Theorem 4.3. In view of Proposition 4.12, so does any finite group G 

isoclinic to H.  As above, the fact that H is non-abelian and nilpotent implies 

the same properties for G. Thus G is a non-abelian, nilpotent, finite group 

satisfying Hypothesis B, and the theorem is proved. | 

5. N o n - n i l p o t e n t  g r o u p s  

Throughout the many lemmas in this section G will be a non-nilpotent finite 

group satisfying Hypothesis B, and K will be its normal subgroup ~/~(G). So 
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K is the smallest normal subgroup N of G such that  the factor group G/ N  is 

nilpotent. Because G is solvable (see Proposition 3.7), this and (2.4) imply that  

(5.1) 1 < K = [K,G] <1 G. 

The critical step in our argument is 

LEMMA 5.2: Suppose there is some complementary subgroup C to K in G such 

that Z(G) <_ C. Then the factor group G/Z(G) is a Frobenius group with 

Fmbenius kernet KZ(G)/Z(G)  "~ K and complement C/Z(G). Furthermore, 

the factor group G/(KZ(G)  ) ~- C/Z(G) is non-trivial, and is either cyclic or a 

quaternion group of order 8. 

Proof'. If C = Z(G), then G = K C  = KZ(G) .  In view of (5.1) this implies that  

1 < K = [K, KZ(G)] = [g,  K], which is impossible because g < G is solvable 

by Proposition 3.7. Therefore Z(G) < C, and C/Z(G) > 1. 

Let x be any element o f C - Z ( G ) .  T h e n x  6 G = K > ~ C  does not lie in 

KZ(G)  = ~oo(G)Z(G). Since 7oo(G) is the group ~/c+l(G) in (2.3), there is 

some integer n = 1 , 2 , . . . ,  c such that  x �9 %~(G)Z(G) -~ /n+I(G)Z(G) .  We shall 

apply Proposition 3.3 with N = 7n(G)Z(G). The commutator  [N,G] is now 

[Tn(G)Z(G), G] = [Tn(G), G] = ~/n+l(G) by (2.2b). So x lies in N -  IN, G]Z(G), 

and x a = x[N, G] = XTn+l(G) by Proposition 3.3. In particular, x a is a union 

of cosets of K = 7 ~ ( G )  < 7n+l(G).  I t  follows that  x G is the full inverse image 

of its image ( x g )  C/K in the factor group G/K.  Hence Ixal is Igl .  I(xK)G/KI. 

The natural  epimorphism of G onto G / K  sends C isomorphically onto G/K,  
and x to xK.  Hence it sends x C C C one to one onto (xK) G/K. So IKI. [xCI --- 

Igl .  I (xg)a /g l  = IxCl. We also have IKI .  ICl = I Z  >~ C I -- IGI. It  follows tha t  

lcl IKI. ICl ICl 
-IKI. l cl- c---] -lCo( )r. 

This can only happen when Ca(x )  is equal to its subgroup Cc(x) .  Then 

CK(X) = KNCa(x )  <_ K N C  = 1. Therefore CK(X) = 1 for every x 6 C - Z ( G ) .  

Since Z(G) is contained in the factor C of the semi-direct product G = K x C, 

the factor group G -- G/Z(G) is the semi-direct p r o d u c t / (  )~ 6' of its nontrivial 

normal s u b g r o u p / ~  = KZ(G)/Z(G)  ~- K with the nontrivial complementary 

subgroup C = C/Z(G). The above arguments imply that  CR(YC ) -- 1, for all 

5 :6  C #  = 6' - 1. Therefore G is a Frobenius group, with Frobenius kernel /~  

and complement C (see [4, Satz V.8.5]). 
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The possible Sylow subgroups of the Frobenius complement C' are well known 

(see [4, Hauptsatz V.8.7]). They are all cyclic except perhaps the Sylow 2- 

subgroup, which may be a generalized quaternion group of some order 2 n :> 8. 

Since the epimorphic image C of G / K  = G/%o(G) is nilpotent, we conclude 

that C is either cyclic or tim direct product Q x / )  of a generalized quaternion 

group Q with some cyclic group D of odd order. In the former case the proof 

of Lemma 5.2 is finished. So we may assume that  the latter case holds. 

The factor group G = G/Z(G) satisfies Hypothesis A by Proposition 3.1. 

Hence so does its factor group G//72. Thus C' ---- G / K  is a non-abelian nilpotent 

finite group satisfying Hypothesis A. By Theorem 4.3 this implies that  C' is a 

Camina p-group, for some prime p. Of course p must be 2, since the Sylow 

2-subgroup Q of C is non-trivial. The generalized quaternion group C = Q has 

an element �9 of order [C[/2 lying in C' - [C, C']. Then ~O has order 2, yet is 

equal to ~[C, C] by the Camina property (4.1). We conclude that  [[C, C][ -- 2, 

so that the generalized quaternion group C is a quaternion group with order 8. 

Hence the lemma holds. | 

Before we can apply the preceding lemma we must find a suitable complement 

C to K in G. In the minimal case such a complement is given by 

LEMMA 5.3: I f  K is a minimal normal subgroup of G, then there is some 

complementary subgroup C to K in O such that Z(G) _< C. 

Proof: Proposition 3.4 tells us that  the minimal normal subgroup K is an 

elementary abelian p-group, for some prime p. The factor group Q = G / K  = 

G/~/~(G) is nilpotent. Hence it is the direct product Gp x Gp, of its unique 

Sylow p-subgroup Gp and its unique Hall p~-subgroup Gp,. It follows that  the 

inverse image of Gp is a normal Sylow p-subgroup P of G containing K such 

that P / K  = GB. By [4, Hauptsatz 1.18.1] there is some subgroup D < G 

complementary to P in G = P>4D. Then D K / K  TM D is Gp,. So D is a nilpotent 

p~-subgroup of G normalizing the p-subgroup P and centralizing P / K  = Gp. 

This implies that  Np(D) = Cp(D),  and that  P = Cp(D)K = Np(D)K  (see 

[4, Satz 1.18.6]). 

If D = 1, then G = P is a p-group, and hence is nilpotent, contrary to 

our assumptions. So D > 1. The product D K  is tile inverse image of Gv,, 

and therefore is a normal subgroup of G. Because K N G is abelian, the 

normalizer Ntr is the normal subgroup NK(DK) <~ G. If NK(D) = K,  then 

P = Np(D)K = Np(D) = Cp(D).  In this case G is the direct product P x D, 

which is nilpotent. This contradicts our assumptions. Therefore NK(D) = 1. 
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Now P is the product N p ( D ) K  of subgroups which intersect in N p ( D ) n  K -- 

NK(D) = 1. So Np(D)  is a complement to K in P.  Since D < NG(D) is 

a complement to P in G, and centralizes Np(D)  = Cp(D), it follows that  

C -- NG(D) = Np(D)  x D is a complement to K in G. Clearly C contains 

Z(G) _< CG(D). So the lemma holds. I 

In the general case we have 

LEMMA 5.4: The factor group G/(KZ(G)  ) is non-trivial, and is either cyclic or 

a quaternion group with order 8. 

Proo~ Since 1 < K = [K, G], the intersection K N Z(G) is a normal subgroup 

of G strictly contained in K.  Hence there is some normal subgroup M of G 

satisfying K n Z(G) _ M <~ K such that  K / M  is a chief factor of G. It follows 

that  N = MZ(G) is a normal subgroup of G containing Z(G) with K n N = M. 

The factor group G = G / N  satisfies both Hypothesis B and Hypothesis A 

by Proposition 3.1. The natural epimorphism e of G onto G sends K onto a 

minimal normal subgroup/~ = K N / N  ~- K / M  of 0 .  It follows from (5.1) that  

1 < /7 /_ -  [K, G]O. The solvability of G then implies t h a t / ~  <~ G. The factor 

group G / K  is an epimorphic image of the nilpotent group G/K,  and hence is 

nilpotent. S o / (  is precisely 7oo(G). Now all the assumptions in this section 

are satisfied with G a n d / 7 / i n  place of G and K,  respectively. In addition, 

satisfies Hypothesis A, so that  Proposition 3.2 gives Z(G) _< [/7/, G]O = / ~ .  This 

forces Z(G) to be 1, s i nce / (  is a non-central minimal normal subgroup of G. 

The hypotheses of Lemma 5.3 are now satisfied with 0 a n d / (  in place of G 

and K,  respectively. Hence so are the hypotheses of Lemma 5.2, with the same 

substitutions. That  lemma tells us that  the factor group G / K  = G/(KZ(G) )  is 

non-trivial, and is either cyclic or a quaternion group of order 8. S i n c e / (  has 

inverse image K N  = KMZ(G)  = KZ(G)  in G, this implies the present lemma. 

I 

Now we can find the complements we need. 

LEMMA 5.5: There is always some complementary subgroup C to K in G such 

that Z(G) ~ C. 

Proof: Let G be the factor group G/(KZ(G)) ,  and e be the natural epimor- 

phism of G onto G. Lemma 5.4 tells us that  G is not 1, and is either cyclic or 

a quaternion group of order 8. 

Suppose that  G is cyclic. Then we may choose some element x 6 G whose 

image �9 = e(x) is not 1 and generates G. The product C = (x)Z(G) is an 
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abelian subgroup of CG(x) such that  G = CK. It follows that  [G, G] _< K = 

%~(G) < "72(G) = [G, G]. Hence K is precisely [G, G]. So the fact that  ~ is not 

1 says that  x lies in G - KZ(G) = G - [G, G]Z(G). Now Proposition 3.3 for 

N = G tells us that  x G = x[G,G] = xK. Hence ICe(x)[ = [G]/IxG[ = ]G[/]K[. 

The equation C K  = G implies that [el~IV A K[ = IG[/[K[ = [CG(x)[. Since C 

is a subgroup of CG(x), we conclude that  C N K = 1. Thus C is a complement 

to K in G containing Z(G), and the lemma is proved when Q is cyclic. 

Now suppose that  G is a quaternion group with order 8. We may choose some 

element �9 E Q - [G, G], and some element x E G having 5: as its image e(x) in 

G. Then 2 has order 4. So we may assume that  x is a 2-element, i.e., that  its 

order is a power of 2. 

The product A = (x) Z(G) is an abelian subgroup of CG(x). Its image e(A) = 

e((x}) is (2), which is precisely the centralizer Ce(~ ) of 2 in the quaternion 

group G. It follows that  e(A) = e(CG(X)) = C~(2) = (2), and hence that 

A K  = CG(x)K is the full inverse image of its image (2) in r -- G/(KZ(G)) .  

Since 1 < K ___ KZ(G),  this implies that  A K  = CG(x)K is also the full inverse 

image of its image A K / K  = C c ( x ) K / K  = CG/K(XK) in G/K.  From this 

information we conclude that  CG(x)K, CG/K(XK ) and Cr have the same 

index 2 in G, G / K  and G, respectively. 

The element x lies in G - [G, G]Z(G), because its image 2 in G = G/(KZ(G))  

lies in G - [G, G]. So Proposition 3.3 for N = G tells us that  x G = x[G, G]. 

Hence x G is a union of cosets of K = %~(G) _< "y2(G) = [G, G], and thus is the 

inverse image of its image (xK) G/K in G/K.  

The order of (xK) GIg is the index 2 of CG/K(xK) in G/K.  Hence its inverse 

image x G has order 2[K[. But x a also has order 

ixal_ IGI = 2 l C a ( x ) K I  _ 2IK[ 

ICa(x)l ICa(x)l Ic (x)l" 

Therefore Cg(x)  = 1, and Ca(x)  is a complement to K in Ca (x )K .  Because 

CG(x)K = AK, and A < Ca(x) ,  this complement Ca(x)  is precisely A. 

Let A2 be the Sylow 2-subgroup of the abelian group A, and S be any Sylow 

2-subgroup of G containing A2. Since A K  has index 2 in G, we must have 

A2 < S. Hence A2 < Ns(A2). So the Sylow 2-subgroup A2 of A is not a Sylow 

2-subgroup of NG(A2). This implies that  A < Na(A2). 

The 2-element x E A lies in A2. Hence CK(A2) _~ Cg(x)  = 1. The normalizer 

NK(A2) is the centralizer CK(A2) = 1, since KA2 is the senti-direct product 

K ~ A2. We conclude that  KNG(A2) < G is a semi-direct product K ~ Na(A2) 

properly containing K >~ A. But K ~ A has index 2 in G. So K >4 NG(A2) must 
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equal G, and NG(A2) is a complement C to K in G with Z(G) < C. Thus the 

proof of Lemma 5.5 is complete. I 

The above lemma implies that  K n Z(G) = 1. Actually, we can do a little 

better. 

LEMMA 5.6: The intersection [G, G] n Z(G) is 1. 

Proof: We know from Lemma 5.5 that  Z(G) is contained in some complement 

C to K in G, and from Lemma 5.2 that  the factor group C = C/Z(G) is 

either cyclic or quaternion of order 8. Since K -- [K, G], the derived group of 

a = g C is [a,  a ]  = g [C, C]. 
If C' is cyclic, then C is abelian, [C, C] is 1, and [G, G] is K,  which intersects 

Z(G) in 1. So the lemma holds in that  case. 

Now assume that  C' is quaternion of order 8. Let e be the natural epimorphism 

of C onto C. The center 2 --- Z(C') of the quaternion group C is cyclic of order 2. 

So its inverse image Z = e-'(2) is an abelian normal subgroup of C such that  

Z(G) < Z <1 C. Since 2 is the only minimal subgroup of the quaternion group 

C', it is contained in <~>, for any 5: E C#.  Hence Z is contained in the abelian 

group <x> Z(G), for any x E C - Z(G). It follows that  Z <_ Z(C). Because 

C/Z TM C/Z is elementary abelian of order 4, we conclude that  C is nilpotent 

with class 2, and that  [C, C] _< Z is the cyclic group of order 2 generated by 

[x, y], for any x, y E C such that  xZ, yZ generate C/Z. 
The epimorphism e: C ~ C sends [C, C] onto [C, C]C, which is precisely the 

subgroup 2 of order 2 in the quaternion group C. Since I[c, c l l  = 2 -- 121, 
it follows that  [C, C] intersects the kernel Z(G) of e in 1. Hence the subgroup 

Z(G) = 1 x Z(G) of the semi-direct product G = K >4 C intersects [G, G] = 

K x [C, C] in 1 = 1 >~ 1, and the lemma is proved. I 

We can now simplify K.  

LEMMA 5.7: K is a minimal normal subgroup of G. 

Proof: Suppose this is false. Since 1 < K ~ G, there exist two normal sub- 

groups L and M of G such that  M <1 L <1 K,  while both K/L and L/M are 

chief factors of G. Lemma 5.5 gives us a complementary subgroup C to K in 

G such that  Z(G) ~_ C. Hence Z(G) n K = 1. By Lemma 5.2 the factor group 

G/Z(G) is a Frobenius group, with Frobenius kernel KZ(G)/Z(G) ~- K and 

complement C/Z(G). It follows that  K,  L and M are equal to [K, G], [L, G] 

and [M, G], respectively. Since Z(G) n K = 1, Proposition 3.6 tells us that  both 

K - L and L - M are single conjugacy classes in G. 
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The normal subgroup N -- MZ(G) <1 G is now the direct product M • Z(G) in 

the semi-direct product G = K ~ C. It follows that G = C / N  is also a Frobenius 

group, with Frobenius kernel /~ = K N / N  = (K • Z(G))/(M • Z(G)) -~ K / M  

and complement C = C N / N  = (M >4 C) / (M • Z(G)) ~ C/Z(C). Furthermore, 

L = L N / N  ~- L / M  is a minimal normal subgroup of G contained i n / ( ,  and 

fiJ/L -~ K / L  is a chief factor of C. Finally, b o t h / 7 / -  L and L # = L - 1 are 

single G-conjugacy classes. 

The Frobenius kernel/7/is nilpotent (see [4, Hauptsatz V.8.7]). So the minimal 

normal subgroup L of G contained in /~  must be central in/~.  It follows that  the 

G-conjugacy class L # is a regular C'-conjugacy class with order ICI. Similarly, 

the G/L-conjugacy class (K/L)  # of the Frobenius factor group G/L has the 

same order IC']. Thus IK/LI = ILl = ICI + 1. The centralizer CO(5: ) of any 

2 C K - L is equal to CR(~), which contains (2} L _< (~'} Z(/~). Since ~ ~ L, 

we have L < C~(5:) _< K. It follows that  

< ~ -- IC].IK/LI = IC] 2 + 
ICr 

But  ~G is K - L, which has order I/:Cl - I L l  = (ICl + I) 2 - (IcI + 1) -- I~12 + IcI. 
This contradicts the preceding inequality, thus proving the lemma. II 

Recall from the introduction that F + >4 F • denotes the semi-direct product 

of the additive group F + of some finite field F with the multiplicative group 

F • of F.  This semi-direct product is a Frobenius group with Frobenius kernel 

F + )4 1 --- F + unless F has order IF[ ---- 2. We denote by E9 an elementary 

abelian group of order 9. Its automorphism group has a unique quaternion 

subgroup Q8 of order 8. The corresponding semi-direct product/779 )~ Qs is also 

a Frobenius group. With this notation, the conclusions of this section for groups 

satisfying Hypothesis A can be stated as 

THEOI~EIVI 5.8: The following properties are equivalent, for any non-nilpotent 
finite group G: 

(5.9a) C satisfies Hypothesis A. 

(5.9b) G satisfies Hypothesis B, and Z(G) = 1. 

(5.9c) G satisfies Hypothesis B, and Z(G) _< [C, G]. 

(5.9d) G is isomorphic to one of the groups on the following list: 

(5.10a) F + )~ F • , for some finite field F with IF I > 2. 

(5.10b) E9 )~ Qs. 

Proof." Suppose that  Hypothesis A holds. Then so does the weaker Hypothesis 

B. So all the results in this section are valid for G and its subgroup K = 0'co(G). 
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Since 1 < K = [K, G], we know from Proposition 3.2 that  Z(G) <_ K.  But 

Z(G) M g = 1 by Lemma 5.5. Hence Z(G) = 1. On the other hand, if Z(G) is 1, 

then Hypothesis A is equivalent to Hypothesis B. Thus (5.9a) holds if and only 

if (5.9b) does. 

If  G satisfies Hypothesis B, then [G, G] M Z(G) -- 1 by Lemma 5.6. It  follows 

that  (5.95) is equivalent to (5.9c). 

Now assume that  G satisfies (5.9b). Lemma 5.7 says that  K = ~/~(G) is a 

minimal normal subgroup of G. Since K = [K, G], Proposition 3.4 tells us that  

K is an elementary abelian p-group, for some prime p, and tha t  K # = K -  1 is a 

single G-conjugacy class with size ]K # ] > 2. Lemma 5.5 gives us a complement 

C to K in G. Since Z(G) -- 1, Lemma 5.2 says that  G = K )4 C is a Frobenius 

group with Frobenius kernel K and complement C. ~ r t h e r m o r e ,  it tells us 

tha t  C is either cyclic or a quarternion group of order 8. The G-conjugacy class 

K # in the abelian Frobenius kernel K must be a regular C-orbit  of length IC[. 

Thus IKI = ]C] + 1. 

If C is cyclic, then G is the semi-direct product of an elementary abelian 

group K of order pn  > 2, for some n > 1, with a cyclic group C of order pn  _ 1 

acting faithfully on K .  I t  follows that  it is isomorphic to the group F + )4 F • 

in (5.10a) for the finite field F of order pn .  

If  C is a quaternion group of order 8, then IK] = ]C I + 1 = 9. In this case G 

is isomorphic to the group E9 )~ Qs in (5.10a). Thus (5.9b) implies (5.9d). 

Suppose that  G = F + )~ F • , for some finite field F with order I F] > 2. It  is 

straightforward to compute that  

x G = ~ [ c ,  c ]  = x ( F +  • 1) 

= [ a , a ]  # = ( F + )  # x l  

= 1  

for a n y x � 9  G. 

holds. 

Suppose that  G = E9 )~ Qs. Then we have 

x a = x '~2 ( a )  = x ( E 9  )~ Z(Qs)) 

if z �9 c - [ a ,  G], 

if x �9 [a ,  G] - 1, 

i f x  = 1, 

Given this information, it is easy to verify that  Hypothesis A 

= x ~ 3 ( c )  = x ( E 9  • 1) 

= 73(G) # = (E9) # x 1 

= 1  

if x E a - ~2(G), 

if x �9 y2(G) - ~'3(G), 

if x �9 "Ya (G) - 1, 

if x =  1, 

for a n y x  E G. 

(5.9d) implies (5.9a), and the theorem is proved. 

Again it is easy to verify that  G satisfies Hypothesis A. Thus 

I 
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Our conclusions for groups satisfying Hypothesis B are given in 

THEOREM 5.11: A non-nilpotent finite group G satisfies Hypothesis B i f  and 

only i f  it is isoclinie to some group on the list (5.10). 

Proo[: If G satisfies Hypothesis B, then all the results in this section hold 

for G and its subgroup /4 = "y~(G). In particular, Lemma 5.6 tells us that  

[G, G] N Z(G) = 1. By the argument on page 134 of [3], this implies tha t  G is 

isoclinic to its factor group Q = G/Z(G) .  This factor group satisfies Hypothesis 

A by Proposition 3.1. Furthermore, "~oo(G) is the i m a g e / (  = K Z ( G ) / Z ( G )  TM 

K > 1 of "yo~(G) -- K.  So Theorem 5.8 tells us that  G is isomorphic to one of 

the groups on the list (5.10). Thus G is isoclinic to such a group. 

Any group H on the list (5.10) is non-nilpotent and satisfies Hypothesis B by 

Theorem 5.8. In view of (4.11d) and Proposition 4.12, so does any finite group 

G isoclinic to H.  Thus the theorem holds. | 
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